Research Specifications

Home \Optical manifestation of ...
Title
Optical manifestation of buckled configurations in graphene-like materials
Type of Research Article
Keywords
Aharonov-Casher effect Quantum transport Graphene Nano-ring buckled configuration Density functional theory Dielectric function Optical properties Graphene-like materials
Abstract
In the present study, the effects of the configuration buckling on dielectric function of silicene, germanene and stanene are investigated. The behavior of the optical absorption spectrum and the refractive index dispersion are studied using the density functional theory in terms of incident photon energy at different buckling heights. The results show that for a fixed bond length, increasing the unit cell buckling height, increases the absorption and the refractive index in silicene and germanene but decreases in stanene. In addition, the absorption peaks shift toward the longer wavelengths (red shift) in the case of silicene and germanene by increasing the buckling height. For clear understanding of the mentioned results, the behavior of the optical absorption spectrum and refractive index dispersion at different buckling heights are studied within the present work. In the case of the silicene and germanene reduction of the band gap with increasing the buckling height could be regarded as the origin of this red shift. Meanwhile unlike the silicene and germanene, band-structure reshaping in stanene could explain the stanene blue shift as a result of the buckling height increment.
Researchers Vahideh Kazemlou (First Researcher)، Arash Phirouznia (Second Researcher)، Kazem Jamshidi-Ghaleh (Third Researcher)