Research Specifications

Home \Graphene nanoribbon tunneling ...
Title
Graphene nanoribbon tunneling field effect transistors
Type of Research Article
Keywords
graphene, quantum transport, transistor
Abstract
The electron-hole symmetry characteristic of graphene nanoribbons (GNRs) gives rise to the electron (hole) tunneling through valence (conduction) band states. By employing this property we have numerically investigated GNR field effect transistors with p -type source and drain in the presence of a gate voltage-inducedn-type channel using the non-equilibrium Green’s function formalism. For long channels, the traditional FET-like I-V behavior is achieved, but at short channels, the sub threshold current opens up an oscillatory dependence on the gate voltage with a considerable amount of current of over 10 6 A. This is the characteristic current behavior of resonant tunneling transistors that exhibit regions of negative differential resistance. The calculated discrete density of states in the channel attributes this behavior to the constructed n-type channel island between p-type source and drain with thin barriers formed by the energy gap
Researchers Hakimeh Mohammadpour (First Researcher)