Keywords
|
Entanglement criterion, Quantum Fisher information, Multipartite
state, Bound entangled state, Quantum metrology.
|
Abstract
|
We propose a sufficient entanglement criterion for the multipartite systems based on quantum Fisher
information. It complements the well-established positive partial transpose criterion in the sense that it is also
able to detect bound entangled states. Moreover, it improves the well-known upper bound on the quantum Fisher
information of separable multiqudit states introduced by Toth et al. [G. Toth and T. Vertesi, Phys. Rev. Lett. 120,
020506 (2018)] and hence detects a greater number of metrologically useful entangled states. This criterion is
formulated as a simple inequality which must be fulfilled by the quantum Fisher information of separable states
of multipartite systems. Violation of this inequality by a state reveals its entanglement and accordingly confirms
its usefulness for quantum metrology. The efficiency of this criterion for detection of entanglement is illustrated
through some examples.
|