Research Specifications

Home \Core-Double Shell ...
Title
Core-Double Shell Nano-hybrids Designed by Multi-walled Carbon Nanotubes, Polyaniline and Polythiophenes in PBDT-DTNT:PC61BM Solar Cells
Type of Research Article
Keywords
PANI, P3HT, PBDT-DTNT, core–mantle–shell, photovoltaic device
Abstract
Core–mantle–shell supramolecules composed of carbon nanotube (CNT)-graftpolyaniline (PANI), poly(3-hexylthiophene) (P3HT), and poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) precursors were designed and utilized in PBDT-DTNT:phenyl-C61-butyric acid methyl ester (PC61BM) solar cells. Weight ratio of polymer:CNT-graft-PANI was 9:1 and the weight ratios were 1:1 in binary and 1:1:1 in ternary systems. Diameters of core(CNT)–mantle(PANI), core(CNT)–mantle(PANI)– shell(P3HT), and core(CNT)–mantle(PANI)–shell(PBDT-DTNT) nanostructures ranged in 75–90 nm, 145–160 nm, and 120–130 nm, respectively. Efficacies of 6.82% (13.92 mA/cm2, 0.71 V, 69%, 7.1 9 103 cm2/V s and 1.9 9 102 cm2/V s) and 7.60% (14.66 mA/cm2, 0.73 V, 71%, 9.0 9 103 cm2/ V s and 3.4 9 102 cm2/V s) were acquired for photovoltaics based on the nanostructures having PBDT-DTNT and P3HT shells, respectively. The PANI mantle may act as both acceptor (accepting the electrons from core) and donor (donating the electrons to shell) in the configuration of core–mantle–shell supramolecules. The P3HT shells acted better than the PBDT-DTNT ones, originated from the simple structure of P3HT backbones and their more ordered and thicker shells, and thus had larger charge mobilities and currents.
Researchers AS’AD ALIZADEH (First Researcher)، Samira Agbolaghi (Second Researcher)