Abstract
|
(ACE2) human receptor with two bioactive compounds, i.e., nicotine and caffeine, via molecular
dynamic (MD) simulations. The simulations reveal the effcient blocking of ACE2 by caffeine and
nicotine in the exposure to the spike (S) protein of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). We have selected the two most important active sites of ACE2-S protein, i.e., 6LZG
and 6VW1, which are critically responsible in the interaction of S protein to the receptor and thus,
we investigated their interaction with nicotine and caffeine through MD simulations. Caffeine and
nicotine are interesting structures for interactions because of their similar structure to the candidate
antiviral drugs. Our results reveal that caffeine or nicotine in a specific molar ratio to 6LZG shows a
very strong interaction and indicate that caffeine is more effcient in the interaction with 6LZG and
further blocking of this site against S protein binding. Further, we investigated the interaction of
ACE2 receptor- S protein with nicotine or caffeine when mixed with candidate or approved antiviral
drugs for SARS-CoV-2 therapy. Our MD simulations suggest that the combination of caffeine with
ribavirin shows a stronger interaction with 6VW1, while in case of favipiravir+nicotine, 6LZG shows
potent effcacy of these interaction, proposing the potent effcacy of these combinations for blocking
ACE2 receptor against SARS-CoV-2
|