Abstract
|
The goal of this research is to synthesize a reduced graphene oxide/silver tungstate (Ag2WO4/RGO)-based nanocomposite by the incorporation of the Ag2WO4 nanoparticles into the RGO nanosheets through sonochemical method. The structural, chemical, and morphological properties of the prepared Ag2WO4/RGO nanocomposite were characterized by field emission scanning electron microscopy (FE-SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) methods. The Ag2WO4/RGO nanocomposite was utilized as an efficient modifier for the supercapacitor electrodes. The electrochemical performance of Ag2WO4/RGO-based electrodes was investigated in 2 M H2SO4 solution by the electrochemical techniques such as continuous cyclic voltammetry (CCV), cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS). The Ag2WO4/RGO-based electrodes presented a specific capacitance of 534 F/g at the scan rate of 5 mV/s and energy density of 68 Wh/kg. CCV assessments of Ag2WO4/RGO-based electrodes showed exceptional cyclic stability (retention of 102.1% of its primary specific capacitance after 5000 cycles) and mechanical stability. The outstanding performance of the Ag2WO4/RGO nanocomposite revealed that it possesses the merits of both of Ag2WO4 nanoparticles and RGO nanosheets and confirms its suitability for the construction of the supercapacitors.
|