Research Specifications

Home \Liquid crystal-assisted ...
Title
Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2
Type of Research Article
Keywords
Optical sensors, Liquid Crystals, Breast Cancer
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers and the second leading cause of cancer mortality among women around the world. The purpose of this study is to present a non-labeled liquid crystal (LC) biosensor, based on the inherent feature of nematic LCs, for the evaluation of BC using the human epidermal growth factor receptor-2 (HER-2) biomarker. The mechanism of this sensing is supported by surface modification with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) encouraging the long alkyl chains that induce a homeotropic orientation of the LC molecules at the interface. To enhance the binding efficacy of more HER-2 antibody (Ab) on LC aligning agents, a simple ultraviolet radiation-assisted method was also used to increase functional groups on the DMOAP coated slides, thereby improving binding affinity and efficiency onto HER-2 Abs. The designed biosensor makes use of the specific binding of HER-2 protein to HER-2 Ab and disruption of the orientation of LCs. This orientation change leads to a transition of the optical appearance from dark to birefringent, enabling the detection of HER-2. This novel biosensor exhibits a linear optical response to HER-2 concentration in the wide dynamic range of 10–6–102 ng/mL, with an ultra-low detection limit of 1 fg/mL. As a proof of concept, the designed LC biosensor was successfully investigated for the quantification of HER-2 protein in patients suffering from BC. Owing to the sensitivity, selectivity, and label-free detection, this biosensor may amplify the application of LC-based biosensors for the detection of most types of cancers.
Researchers Mehri H. Pourasl (First Researcher)، Ali Vahedi (Second Researcher)، Habib Tajalli (Third Researcher)، Balal Khalilzadeh (Fourth Researcher)، Farzaneh Bayat (Fifth Researcher)