Research Specifications

Home \Development of nanocomposites ...
Title
Development of nanocomposites based on chitosan/reduced graphene oxide for wound healing application
Type of Research Article
Keywords
Nanocomposite; Chitosan/Reduced graphene oxide; Collagen peptides.
Abstract
Nanocomposites containing different effective materials have various effects, such as antioxidant, and anti-inflammatory activity, which are desirable for wound dressing. Herein, nanocomposites based on chitosan/reduced graphene oxide (CS/rGO) containing curcumin (CS/rGO/Cur), curcumin and papain (CS/rGO/Cur/Pa), curcumin, papain, and collagen peptide (CS/rGO/CP/Cur/Pa), prepared using ionic gelation method and characterized by Fourier Transform Infrared (FTIR), Differential Light Scattering (DLS), X-ray diffraction (XRD), and Scanning Electron Microscope (SEM). Subsequently, the nanocomposite’s potential for wound healing was studied through parameters such as porosity, swelling, degradability, anti-inflammatory, antioxidant, antibacterial, cell viability, and in-vivo. The results of FTIR, XRD, SEM, and DLS showed that the nanocomposites synthesized properly with an almost spherical morphology, an average diameter of below 100 nm (mostly 40-85 nm), and a hydrodynamic diameter of 455-616 nm. The various tests demonstrated the nanocomposite’s effectiveness in wound healing. The results showed that CS/rGO/CP/Cur/Pa increased the anti-inflammatory and cell viability up to 99.7 % and 395 %, respectively, which is higher than others. Animal tests on rats showed that CS/rGO/CP/Cur/Pa accelerated the wound healing rate up to 70 %. In conclusion, the results showed that the nanocomposites based on CS/rGO significantly improve wound healing, and the presence of collagen peptides boost their wound healing potency.
Researchers Niloufar Elhami (First Researcher)، Mohammad Pazhang (Second Researcher)، Younes Beygi khosrowshahi (Third Researcher)، Amir Dehghani (Fourth Researcher)