Research Specifications

Home \ارائه رویکردی جدید مبتنی بر ...
Title
ارائه رویکردی جدید مبتنی بر ترنسفورمر برای تحلیل احساسات در توییتر
Type of Research Thesis
Keywords
تحلیل احساسات، ترنسفورمر، تحلیل داده های توییتر، پردازش زبان طبیعی
Abstract
This research investigates modern sentiment mining methods, particularly for languages like Nepali, Arabic, and Turkish, which present unique linguistic challenges. It proposes a transformer-based framework using pre-trained language models like BERT to analyze Twitter data sentiment, addressing noise and short-text issues common in social media. The methodology involves data collection, preprocessing, model fine-tuning, and evaluation, with the model outperforming baseline models like BiLSTM and CNN-LSTM. The study highlights the advantages of transformers, including contextual embeddings, parallel processing, and transfer learning, and contributes a novel approach that leverages attention mechanisms for accurate sentiment classification in short-text data, while also improving time and memory efficiency compared to hybrid models.
Researchers (Student)، Hossein Abbasimehr (Primary Advisor)، Esmaeil Nourani (Advisor)