Keywords
|
Distributed generator,Droop control, Frequency and voltage control,Matrix converter, Microgrid, Micro-turbine
|
Abstract
|
The active and reactive load changes have a significant impact on voltage
and frequency. In this paper, in order to stabilize the microgrid (MG) against
load variations in islanding mode, the active and reactive power of all
distributed generators (DGs), including energy storage (battery), diesel
generator, and micro-turbine, are controlled. The micro-turbine generator is
connected to MG through a three-phase to three-phase matrix converter, and
the droop control method is applied for controlling the voltage and
frequency of MG. In addition, a method is introduced for voltage and
frequency control of micro-turbines in the transition state from gridconnected mode to islanding mode. A novel switching strategy of the matrix
converter is used for converting the high-frequency output voltage of the
micro-turbine to the grid-side frequency of the utility system. Moreover,
using the switching strategy, the low-order harmonics in the output current
and voltage are not produced, and consequently, the size of the output filter
would be reduced. In fact, the suggested control strategy is load-independent
and has no frequency conversion restrictions. The proposed approach for
voltage and frequency regulation demonstrates exceptional performance and
favorable response across various load alteration scenarios. The suggested
strategy is examined in several scenarios in the MG test systems, and the
simulation results are addressed.
|