مشخصات پژوهش

صفحه نخست /Handbook of Research on ...
عنوان
Handbook of Research on Emerging Technologies for Electrical Power Planning, Analysis, and Optimization- Stochastic Contingency Analysis Based on Voltage Stability Assessment in Islanded Power System Considering Load Uncertainty Using MCS and k-PEM
نوع پژوهش کتاب
کلیدواژه‌ها
Islanding, catastrophic cascading outage, Backward Elimination Probabilistic Power Flow, Method
چکیده
Increased electricity demands and economic operation of large power systems in a deregulated environment with a limited investment in transmission expansion planning causes interconnected power grids to be operated closer to their stability limits. Meanwhile, the loads uncertainty will affect the static and dynamic stabilities. Therefore, if there is no emergency corrective control in time, occurrence of wide area contingency may lead to the catastrophic cascading outages. Studies show that many wide area blackouts which led to massive economic losses may have been prevented by a fast feasible controlled islanding decision making. This chapter introduces a novel computationally efficient approach for separating of bulk power system into several stable sections following a severe disturbance. The splitting strategy reduces the large initial search space to an interface boundary network considering coherency of synchronous generators and network graph simplification. Then, a novel islanding scenario generator algorithm denoted as BEM (Backward Elimination Method) based on PMEAs (Primary Maximum Expansion Areas) has been applied to generate all proper islanding solutions in the simplified network graph. The PPF (Probabilistic Power Flow) based on Newton-Raphson method and Q-V modal analysis has been used to evaluate the steady-state stability of created islands in each generated scenario. BICA (Binary Imperialistic Competitive Algorithm) has then been applied to minimize total load-generation mismatch considering integrity, voltage permitted range and steady-state voltage stability constraints. The best solution has then been applied to split the entire power network. A novel stochastic contingency analysis of islands based on PSVI (Probability of Static Voltage Instability) using MCS (Monte Carlo Simulation) and k-PEM (k-Point Estimate Method) have been proposed to identify the critical PQ buses and severe contingencies. In these approaches, the ITM (Inverse Transform
پژوهشگران فرخنده جباری (نفر اول)، هیرش سیدی (نفر دوم)، سجاد نجفی روادانق (نفر سوم)، بهنام محمدی ایواتلو (نفر چهارم)