مشخصات پژوهش

صفحه نخست /Lie superbialgebra structures ...
عنوان
Lie superbialgebra structures on the Lie superalgebra (C^3+A) and deformation of related integrable Hamiltonian systems
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Lie superalgebra, Lie superbialgebra, classical r-matrix, Quantization, Integrable Hamiltonian system
چکیده
Admissible structure constants related to the dual Lie superalgebras of particular Lie superalgebra $({\cal C}^3 + {\cal A})$ are found by a straightforward calculation from the matrix form of super Jacobi and mixed super Jacobi identities which are obtained from adjoint representation. Then, by making use of the automorphism supergroup of the Lie superalgebra $({\cal C}^3 + {\cal A})$, the Lie superbialgebra structures on the Lie superalgebra $({\cal C}^3 + {\cal A})$ are obtained and classified into inequivalent 31 families. We also determine all corresponding coboundary and bi-r-matrix Lie superbialgebras. The quantum deformations associated with some Lie superbialgebras $({\cal C}^3 + {\cal A})$ are obtained, together with the corresponding deformed Casimir elements. As an application of these quantum deformations we construct a deformed integrable Hamiltonian system from the representation of the Hopf superalgebra ${{U}_{_\lambda}}^{\hspace{-1mm}({\cal C}_{p=1}^{2,\epsilon} \oplus {\cal A}_{1,1})}\big(({\cal C}^3+{\cal A})\big)$.
پژوهشگران علی اقبالی (نفر اول)، عادل رضائی اقدم (نفر دوم)