مشخصات پژوهش

صفحه نخست /The topology of Liouville ...
عنوان
The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
integrable Hamiltonian systems, momentum mapping, bifurcation diagram, topological invariants.
چکیده
Several new integrable cases for Euler’s equations on some six-dimensional Lie algebras were found by Sokolov in 2004. In this paper we study topological properties of one of these integrable cases on the Lie algebra so(4). In particular, for the system under consideration the bifurcation diagrams of the momentum mapping are constructed and all Fomenko invariants are calculated. Thereby, the classification of isoenergy surfaces for this system up to the rough Liouville equivalence is obtained.
پژوهشگران قربانعلی حقیقت دوست بناب (نفر اول)، آندره اوشمکو (نفر دوم)