مشخصات پژوهش

صفحه نخست /Invariant Poisson-Nijenhuis ...
عنوان
Invariant Poisson-Nijenhuis structures on Lie groups and classification
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Poisson-Nijenhuis structure, Lie group
چکیده
We study right-invariant (resp., left-invariant) Poisson-Nijenhuis structures on a Lie group and introduce their infinitesimal counterpart, the so-called r-n structures on the corresponding Lie algebra . We show that - structures can be used to find compatible solutions of the classical Yang-Baxter equation. Conversely, two compatible r-matrices from which one is invertible determine an - structure. We classify, up to a natural equivalence, all -matrices and all - structures with invertible on four-dimensional symplectic real Lie algebras. The result is applied to show that a number of dynamical systems which can be constructed by -matrices on a phase space whose symmetry group is Lie group , can be specifically determined.
پژوهشگران زهره روان پاک (نفر اول)، عادل رضائی اقدم (نفر دوم)، قربانعلی حقیقت دوست بناب (نفر سوم)