مشخصات پژوهش

صفحه نخست /Brill–Noether loci on moduli ...
عنوان
Brill–Noether loci on moduli spaces of symplectic bundles over curves
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Brill–Noether locus · Symplectic vector bundle · Determinantal locus
چکیده
The symplectic Brill–Noether locus S2kn,K associated to a curve C parametrises stable rank 2n bundles over C with at least k sections and which carry a nondegenerate skewsymmetric bilinear form with values in the canonical bundle. This is a symmetric determinantal variety whose tangent spaces are defined by a symmetrised Petri map. We obtain upper bounds on the dimensions of various components of S2kn,K . We show the nonemptiness of several S2kn,K , and in most of these cases also the existence of a component which is generically smooth and of the expected dimension. As an application, for certain values of n and k we exhibit components of excess dimension of the standard Brill–Noether locus B2kn,2n(g−1) over any curve of genus g ≥ 122. We obtain similar results for moduli spaces of coherent systems.
پژوهشگران علی بجروانی (نفر اول)، جورج اچ هیتچینق (نفر دوم)