عنوان
|
الگوریتم های نقطه درونی پیشگو-اصلاح گر بر اساس همسایگی وسیع برای مسائل بهینه سازی خطی و نیمه معین
|
نوع پژوهش
|
پایان نامه
|
کلیدواژهها
|
بهینه سازی خطی، بهینه سازی نیمه معین، روش های پیشگو-اصلاح گر، همسایگی وسیع، پیچیدگی چندجمله ای
|
چکیده
|
با توجه به این نکته که روش های نقطه درونی در حل مسائل بهینه سازی خطی و دسته گسترده ای از مسائل بهینه سازی محدب بسیار موفق بوده است و حل این مسائل را در مدت زمان چند جمله ای ممکن ساخته است. معرفی یک الگوریتم نقطه درونی با بهترین کران پیچیدگی ممکن و نتایج عددی بهتر در مقایسه با الگوریتم های ارائه شده قبلی، هنوز بعد از چند دهه یک چالش اساسی در زمینه های تحقیقاتی است. از طرفی روش های تعقیب مسیر با گام بلند در عمل نتایج بهتری نسبت به روش های تعقیب مسیر با گام کوتاه دارند در حالی که کران پیچیدگی روش های گام کوتاه بهتر از روش های گام بلند است. این موضوع شکافی بین تئوری و عمل ایجاد می کند. بنابراین تلاش برای کاهش این شکاف و یافتن الگوریتم های گام بلندی با کران پیچیدگی یکسان و یا بهتر نسبت به الگوریتم های گام کوتاه اهمیت تحقیقات در این زمینه را بیشتر می کند. یکی دیگر از ویژگی های روش های نقطه درونی، تعمیم موفقیت آمیز این روش ها به مسائل مختلف بهینه سازی از جمله مسائل مکملی خطی، بهینه سازی مخروط متقارن، بهینه سازی نیمه معین و غیره است. ﺩﺭ ﭼﻨﺪ ﺩﻫﻪ ﺍﺧﯿﺮ، ﺑﻬﯿﻨﻪ ﺳﺎﺯﯼ ﻧﯿﻤﻪ ﻣﻌﯿﻦ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﻣﺤﻘﻘﺎﻥ ﺑﺴﯿﺎﺭﯼ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ ﭼﺮﺍ ﮐﻪ ﮐﺎﺭﺑﺮﺩﻫﺎﯼ ﻓﺮﺍﻭﺍنی ﺩﺭ ﺯﻣﯿﻨﻪ ﻫﺎﯼ ﻣﺨﺘﻠﻒ ﺗﺤﻘﯿﻘﺎتی ﺍﺯ ﺟﻤﻠﻪ ﺑﻬﯿﻨﻪ ﺳﺎﺯﯼ ﺗﺮﮐﯿﺒﯿﺎتی، ﻧﻈﺮﯾﻪ ﺳﯿﺴﺘﻢ ﻭ ﮐﻨﺘﺮﻝ ﻭ ﻏﯿﺮﻩ ﺩﺍﺭﺩ. با توجه به این کاربرد گسترده، تعمیم روش های نقطه درونی بهینه سازی خطی به بهینه سازی نیمه معین یکی از زمینه های تحقیقاتی مهم می باشد.
|
پژوهشگران
|
حدیث عابدی (دانشجو)، بهروز خیرفام (استاد راهنما)، میرکمال میرنیا (استاد مشاور)
|