مشخصات پژوهش

صفحه نخست /A Mathematical Theoretical ...
عنوان
A Mathematical Theoretical Study of a Coupled Fully Hybrid (k,\Phi)-Fractional Order System of BVPs in Generalized Banach Spaces
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
(k,\Phi)–Hilfer fractional derivative, existence, nonlinear analysis, Ulam stability, generalized Banach spaces, Lipschitzian matrix
چکیده
In this paper, we study a coupled fully hybrid system of (k,\Phi)–Hilfer fractional differential equations equipped with non-symmetric (k,\Phi)–Riemann-Liouville (RL) integral conditions. To prove the existence and uniqueness results, we use the Krasnoselskii and Perov fixed-point theorems with Lipschitzian matrix in the context of a generalized Banach space (GBS). Moreover, the Ulam– Hyers (UH) stability of the solutions is discussed by using the Urs’s method. Finally, an illustrated example is given to confirm the validity of our results.
پژوهشگران عبدالطیف بوتیارا (نفر اول)، سینا اعتماد (نفر دوم)، صبری ثابت (نفر سوم)، سوتیریس انتویاش (نفر چهارم)، شهرام رضاپور (نفر پنجم)، یسادا تاریبون (نفر ششم به بعد)