مشخصات پژوهش

صفحه نخست /The k-rainbow reinforcement ...
عنوان
The k-rainbow reinforcement numbers in graphs
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
The k-rainbow reinforcement numbers in graphs
چکیده
Let k ≥ 1 be an integer, and let G be a graph. A k-rainbow dominating function (or a k-RDF) of G is a function f from the vertex set V(G) to the family of all subsets of {1, 2, . . . , k} such that for every v ∈ V(G) with f (v) = ∅, the condition u∈NG(v) f (u) = {1, 2, . . . , k} is fulfilled, where NG(v) is the open neighborhood of v. The weight of a k-RDF f of G is the valueω(f ) = v∈V(G) | f (v) |. The k-rainbow domination number of G, denoted by γrk(G), is the minimum weight of a k-RDF of G. The 1-rainbow domination is the same as the classical domination. The k-rainbow reinforcement number of G, denoted by rrk(G), is the minimum number of edges that must be added to G in order to decrease the k-rainbow domination number. In this paper, we study the k-rainbow reinforcement number of graphs to compare γrk and γrk′ for k ̸= k′, and present some sharp bounds concerning the invariant
پژوهشگران جعفر امجدی زین الحاجلو (نفر اول)، لیلا اصغر شرقی (نفر دوم)، نسرین دهگردی (نفر سوم)، میچتکا فورویا (نفر چهارم)، سید محمود شیخ الاسلامی کاوکانی (نفر پنجم)، لوتز فولکمن (نفر ششم به بعد)