مشخصات پژوهش

صفحه نخست /Independent Roman domination ...
عنوان
Independent Roman domination and 2-independence in trees
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Independent Roman domination and 2-independence in trees
چکیده
:V(G)→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. A Roman dominating function f is called an independent Roman dominating function if the set of all vertices with positive weights is an independent set. The weight of an independent Roman dominating function f is the value f(V(G))=∑u∈V(G)f(u). The independent Roman domination number of G, denoted by iR(G), is the minimum weight of an independent Roman dominating function on G. A subset S of V is a 2-independent set of G if every vertex of S has at most one neighbor in S. The maximum cardinality of a 2-independent set of G is the 2-independence number β2(G). These two parameters are incomparable in general, however, we show that for any tree T, β2(T)≥iR(T) and we characterize all trees attaining the equality.
پژوهشگران جعفر امجدی زین الحاجلو (نفر اول)، سید محمود شیخ الاسلامی کاوکانی (نفر دوم)، مینا ولی نوازملایوسف (نفر سوم)، نسرین دهگردی (نفر چهارم)