مشخصات پژوهش

صفحه نخست /یک رویکرد سری طیفی کارآمد ...
عنوان
یک رویکرد سری طیفی کارآمد برای مدل های فوکر-پلانک کسری زمانی با استفاده از چندجمله ای های چبیشف
نوع پژوهش پایان نامه
کلیدواژه‌ها
روش هم محلی چبیشف نوع دوم، روش سری توانی باقیمانده، عملگر مشتق کاپوتو، معادله فوکر پلانک کسری زمانی
چکیده
Time-fractional Fokker–Planck models are essential for describing anomalous diffusion, stochastic processes with memory, and transport phenomena in fields such as physics, biology, finance, and engineering. Their fractional nature introduces non-locality and memory effects, making analytical solutions rare and standard numerical methods often inefficient, inaccurate, or unstable, particularly for long-time simulations. Traditional discretization-based techniques typically require fine meshes and small time steps, leading to high computational costs and error accumulation. This creates a strong necessity for high-accuracy and efficient numerical methods tailored for fractional models. The spectral–series approach using Chebyshev polynomials offers a powerful alternative, as spectral methods are well-known for their exponential convergence, stability, and ability to capture global solution behavior with fewer basis functions. The importance of this research lies in providing a robust and computationally efficient framework for solving time-fractional Fokker–Planck equations, thereby advancing theoretical studies and enabling more precise simulations in diverse scientific and engineering applications.
پژوهشگران علی هادی فاضل عباس شحاد (دانشجو)، محمد حسین ستاری (استاد راهنمای اول)، علی ابوالحسنی (استاد مشاور)، علی خانی (استاد راهنمای دوم)