مشخصات پژوهش

صفحه نخست /‏کاربرد روش های موجک به ...
عنوان
‏کاربرد روش های موجک به معادلات دیفرانسیل کسری کاپوتو روی بازه های کراندار
نوع پژوهش پایان نامه
کلیدواژه‌ها
مشتقات کاپوتو، ماتریس عملیاتی، موجک های بی-اسپلاین نیمه‎ متعامد
چکیده
Caputo fractional differential equations are widely used to model memory-dependent and anomalous dynamic systems in physics, engineering, control theory, and biological processes. Their non-local fractional derivatives pose significant challenges for analytical solutions, and conventional numerical methods often struggle with accuracy, stability, and computational efficiency, particularly when applied to bounded intervals or long-time simulations. This highlights the necessity for advanced numerical techniques that can efficiently handle the global nature of fractional derivatives while providing high precision. A wavelet-based numerical method offers a powerful solution by leveraging the localization, multiresolution properties, and high-order approximation capabilities of wavelets, enabling accurate and efficient computation even in the presence of boundary constraints. The importance of this research lies in establishing a robust and versatile computational framework that improves the numerical treatment of Caputo fractional differential equations, advancing both theoretical understanding and practical applications across diverse scientific and engineering fields.
پژوهشگران سجاد هانی عبید خیکان (دانشجو)، علی خانی (استاد راهنمای اول)، جعفر پورمحمود (استاد مشاور)، بهروز خیرفام (استاد راهنمای دوم)